Unlocking the Secrets of the Achilles’ Heel

02/28/2017 - 13:05

An interdisciplinary team investigates microstructure and micromechanics of the tendon-bone insertion

Walking, running, sprinting – every movement of the foot stretches the Achilles’ tendon. When jumping, the loads can approach ten times the body weight. Amazingly, the connection between the heel bone and Achilles’ tendon withstands theses tremendous loads. A team of doctors, physicists, chemists and engineers at the Technical University of Munich (TUM) has now discovered why.

Some 8,000 torn Achilles’ tendons are treated in Germany every year. And that even though it is the strongest tendon in the human body. It connects the ankle bone to the calf muscle and holds up to ten times the body’s weight. The tendon got its name from the – nearly – invulnerable Greek hero Achilleus, who was doomed by an arrow that struck him in his heel.

“Even though orthopedic doctors treat patients with tendon injuries every day, we still know very little about the precise histological structure at the direct interface between bone and tendon: The biochemical processes, the micromechanics and the microstructure of the tissue have hardly been researched,” reports PD Dr. Rainer Burgkart, senior physician and research director at the Chair of Orthopedics and Sports Orthopedics at the TUM.

Thin fibers, perfect hold

Together with an interdisciplinary team of biochemists and biophysicists at the TU Munich, within the framework of the newly founded Center for Functional Protein Assemblies (CPA) and the Munich School of Bioengineering (MSB), the physician has now deciphered the secret of the Achilles’ heel: The experts discovered a tissue layer between the tendons and bones that comprises extremely thin protein fibers and ensures the remarkable strength.

That is why athletes can take hurdles during a sprint, jump over high bars and survive hard landings, all without damaging the bond between the tendon and ankle bone. In fact, the tendon is more likely to tear than to separate from the bone tissue.

“Up to now, it was thought that the tendons attach directly to the bone. In fact, though, there is a transitional zone. Here the tendon tissue splits into dozens of fine fibers with a characteristic biochemical composition,” explains Prof. Andreas Bausch, Chair of Cellular Biophysics and director of the interdisciplinary research group. “The thin fibers are firmly anchored to the jagged surface of the bone and mechanically extremely durable.”

Together from the start: medicine, physics chemistry and engineering

The fine fibers were discovered using a new interdisciplinary research approach: “The actual innovation in the work lay in the fact that we brought together various medical, physical and engineering processes,” says Bausch.

A piece of porcine bone with tendon, meticulously prepared by the physicians, was clamped and fixed in an apparatus at the Chair of Cellular Biophysics. Next, the researchers aimed a microscope at the boundary layer, along which the tendon and bone grow together. Using multiscale microscope technology, dozens of images were taken and compiled into a single, large image. “In this way, we could make visible the structure of the fine, split fibers,” reports Bausch.

Then the team used fluorescing antibodies to get specific proteins to light up. This is where it became clear that the thin fibers have a biochemical composition different from that of the actual tendon. In the third part of their experiment, the researchers moved the tendon back and forth under load and filmed the fibers. The result: Depending on the loading direction, different fibers are active and stabilize the contact.

The light microscopy investigations were augmented using high-resolution images of an electron microscope. At the Chair of Medical Biophysics the scientists also employed micro computer tomography to represent the interface region in three dimensions. In addition, researchers at the Chair of Organic Chemistry analyzed the various proteins in the tendons and interface fibers.

Approaches for medicine of the future

“These results allow us, for the first time, to understand the biochemical processes in the contact zone between bones and tendons, which give our locomotor system its extreme strength,” summarizes Bausch.

Possible applications will arise in material research, as well as in medicine: Engineers will be able to produce innovative connections between hard and soft materials. And orthopaedic doctors will use the results in tumor surgery to attach tendons to implants.

The research arose out of a project at the International Graduate School of Science and Engineering (IGSSE) and was supported by the Excellence Cluster Nanosystems Initiative Munich (NIM), both funded by the German Research Foundation (DFG) within the framework of the Excellence Initiative.


The microstructure and micromechanics of the tendon–bone insertion
L. Rossetti, L. A. Kuntz, E. Kunold, J. Schock, K. W. Müller, H. Grabmayr,
J. Stolberg-Stolberg, F. Pfeiffer, S. A. Sieber, R. Burgkart and A. R. Bausch
Nature Materials, online, 27.02.2017 – DOI: 10.1038/NMAT4863


Further Information about the project:


Prof. Dr. Andreas R. Bausch
Technical University Munich
Chair of Cellular Biophysics
James-Franck-Str. 1, 85748 Garching, Germany
Tel.: +49 89 289 12480 – E-Mail:

Technical University of Munich (TUM) is one of Europe’s leading research universities, with more than 500 professors, around 10,000 academic and non-academic staff, and 40,000 students. Its focus areas are the engineering sciences, natural sciences, life sciences and medicine, combined with economic and social sciences. TUM acts as an entrepreneurial university that promotes talents and creates value for society. In that it profits from having strong partners in science and industry. It is represented worldwide with a campus in Singapore as well as offices in Beijing, Brussels, Cairo, Mumbai, San Francisco, and São Paulo. Nobel Prize winners and inventors such as Rudolf Diesel, Carl von Linde, and Rudolf Mößbauer have done research at TUM. In 2006 and 2012 it won recognition as a German "Excellence University." In international rankings, TUM regularly places among the best universities in Germany.

Copyright © 2017 Running Journal